Accepted paper with abstract, SoCG'09

Pankaj Kumar Agarwal, Esther Ezra and Micha Sharir

Near-Linear Approximation Algorithms for Geometric Hitting Sets

Given a set system (X, \mathfrak{R}) , the *hitting set* problem is to find a smallestcardinality subset $H \subseteq X$, with the property that each range $R \in \mathfrak{R}$ has a non-empty intersection with H. We present near-linear time approximation algorithms for the hitting set problem, under the following geometric settings: (i) \mathfrak{R} is a set of planar regions with small union complexity. (ii) \mathfrak{R} is a set of axis-parallel *d*-rectangles in *d*-space. In both cases X is either the entire *d*-dimensional space or a finite set of points in *d*-space. The approximation factors yielded by the algorithm are small; they are either the same as or within an $O(\log n)$ factor of the best factors known to be computable in polynomial time.